3.1853 \(\int \frac {1}{(a+\frac {b}{x^2}) x^4} \, dx\)

Optimal. Leaf size=34 \[ -\frac {\sqrt {a} \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{b^{3/2}}-\frac {1}{b x} \]

[Out]

-1/b/x-arctan(x*a^(1/2)/b^(1/2))*a^(1/2)/b^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 34, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {263, 325, 205} \[ -\frac {\sqrt {a} \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{b^{3/2}}-\frac {1}{b x} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b/x^2)*x^4),x]

[Out]

-(1/(b*x)) - (Sqrt[a]*ArcTan[(Sqrt[a]*x)/Sqrt[b]])/b^(3/2)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 263

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b, m
, n}, x] && IntegerQ[p] && NegQ[n]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+\frac {b}{x^2}\right ) x^4} \, dx &=\int \frac {1}{x^2 \left (b+a x^2\right )} \, dx\\ &=-\frac {1}{b x}-\frac {a \int \frac {1}{b+a x^2} \, dx}{b}\\ &=-\frac {1}{b x}-\frac {\sqrt {a} \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{b^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 34, normalized size = 1.00 \[ -\frac {\sqrt {a} \tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{b^{3/2}}-\frac {1}{b x} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b/x^2)*x^4),x]

[Out]

-(1/(b*x)) - (Sqrt[a]*ArcTan[(Sqrt[a]*x)/Sqrt[b]])/b^(3/2)

________________________________________________________________________________________

fricas [A]  time = 0.83, size = 82, normalized size = 2.41 \[ \left [\frac {x \sqrt {-\frac {a}{b}} \log \left (\frac {a x^{2} - 2 \, b x \sqrt {-\frac {a}{b}} - b}{a x^{2} + b}\right ) - 2}{2 \, b x}, -\frac {x \sqrt {\frac {a}{b}} \arctan \left (x \sqrt {\frac {a}{b}}\right ) + 1}{b x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^2)/x^4,x, algorithm="fricas")

[Out]

[1/2*(x*sqrt(-a/b)*log((a*x^2 - 2*b*x*sqrt(-a/b) - b)/(a*x^2 + b)) - 2)/(b*x), -(x*sqrt(a/b)*arctan(x*sqrt(a/b
)) + 1)/(b*x)]

________________________________________________________________________________________

giac [A]  time = 0.15, size = 29, normalized size = 0.85 \[ -\frac {a \arctan \left (\frac {a x}{\sqrt {a b}}\right )}{\sqrt {a b} b} - \frac {1}{b x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^2)/x^4,x, algorithm="giac")

[Out]

-a*arctan(a*x/sqrt(a*b))/(sqrt(a*b)*b) - 1/(b*x)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 30, normalized size = 0.88 \[ -\frac {a \arctan \left (\frac {a x}{\sqrt {a b}}\right )}{\sqrt {a b}\, b}-\frac {1}{b x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b/x^2)/x^4,x)

[Out]

-1/b/x-a/b/(a*b)^(1/2)*arctan(1/(a*b)^(1/2)*a*x)

________________________________________________________________________________________

maxima [A]  time = 1.84, size = 29, normalized size = 0.85 \[ -\frac {a \arctan \left (\frac {a x}{\sqrt {a b}}\right )}{\sqrt {a b} b} - \frac {1}{b x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^2)/x^4,x, algorithm="maxima")

[Out]

-a*arctan(a*x/sqrt(a*b))/(sqrt(a*b)*b) - 1/(b*x)

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 26, normalized size = 0.76 \[ -\frac {1}{b\,x}-\frac {\sqrt {a}\,\mathrm {atan}\left (\frac {\sqrt {a}\,x}{\sqrt {b}}\right )}{b^{3/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4*(a + b/x^2)),x)

[Out]

- 1/(b*x) - (a^(1/2)*atan((a^(1/2)*x)/b^(1/2)))/b^(3/2)

________________________________________________________________________________________

sympy [B]  time = 0.19, size = 65, normalized size = 1.91 \[ \frac {\sqrt {- \frac {a}{b^{3}}} \log {\left (x - \frac {b^{2} \sqrt {- \frac {a}{b^{3}}}}{a} \right )}}{2} - \frac {\sqrt {- \frac {a}{b^{3}}} \log {\left (x + \frac {b^{2} \sqrt {- \frac {a}{b^{3}}}}{a} \right )}}{2} - \frac {1}{b x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x**2)/x**4,x)

[Out]

sqrt(-a/b**3)*log(x - b**2*sqrt(-a/b**3)/a)/2 - sqrt(-a/b**3)*log(x + b**2*sqrt(-a/b**3)/a)/2 - 1/(b*x)

________________________________________________________________________________________